In my paper, A New Model of Computational Genomics [1], I introduce a simple test for ancestry that cannot credibly be argued with. The argument is as follows: assume that we begin with genome A in location a, and that three groups of individuals with genome A all begin in location a. Now assume that two of those groups go to different locations, specifically, that one group goes to location b and the other group goes to location c. Because mtDNA is so stable, it could be the case that even over significant amounts of time, the populations in locations b and c, still have genome A, with basically no mutations. If however, any mutations occur, it cannot credibly be the case that genomes in location b (genome B) and location c (genome C) develop even more bases in common with each other. This becomes increasingly unlikely as a function of the number of new matching genomes between B and C, and is governed by the binomial distribution. As a consequence, if A is the common ancestor of genomes B and C, it must be the case that |AB| < |BC| and |AC| < |BC|, where |xy| denotes the number of matching bases between genomes x and y. That is, A must have more bases in common with B and C, than B and C have in common with each other, since B and C independently mutated away from genome A.
Applying this test, we find that the Old Kingdom Ancient Egyptians are the common ancestors of basically all Northern Europeans, many Africans, Asians, and in particular, South East Asians. I’ve also noted repeatedly that the Old Kingdom Ancient Egyptians appear to be Asian, which, superficially, makes no sense. Finally, I’ve noted that Heidelbergensis plainly evolved into Phoenicians, and then the Old Kingdom Ancient Egyptians. Phoenicians appear in Asia on the maternal line, in particular in Sri Lanka.
Putting it all together, tonight I tested which population is most likely to be the ancestor of the Old Kingdom Ancient Egyptians, and the clear answer is the Sri Lankans. The attached code runs the test, and produces a normalized score. The Sri Lankans scored 17.36, and the next best answer was the Vedda Aboriginals (also in Sri Lanka), with a score of 8.3064. The plain implication is that the mutation from the Phoenician maternal line, into the Old Kingdom Ancient Egyptian maternal line took place in Sri Lanka, or somewhere very close.
This completes the history of mankind, with the people of Cameroon the likely source population of all of mankind (including the Denisovans, Heidelbergensis, and Neanderthals), Heidelbergensis then evolving into the Phoenicians, the Phoenicians traveling to Asia, there evolving into the Old Kingdom Ancient Egyptian maternal line, who then migrated back to North East Africa, forming the cradle of modern human mtDNA all over the world, suggesting they were even more successful as a people than current history suggests.
Discover more from Information Overload
Subscribe to get the latest posts sent to your email.