I’m working on the Pro Version of my AutoML software, Black Tree AutoML, and I’m including an iterative version of my core clustering algorithm, simply because Octave runs out of memory if the datasets are larger than a few thousand rows (vectorization requires a large number of copies of the original dataset). The only other change is to the calculation of the possible values of delta, in this case I’m using a value of delta from my statistical clustering algorithm, simply because the standard calculation produces values that are too small. I suspect that this is due to the large dimension of the dataset I’ve selected in this case. I think I may have already written this algorithm, since the vectorized version almost certainly followed from a previously iterative algorithm, but I don’t know where it is in my library, so here it is, possibly again.
Iterative Clustering
Discover more from Information Overload
Subscribe to get the latest posts sent to your email.