%
%
%VECTORIZED DEEP LEARNING

[o)

(o]
[o)

(o]

%COPYRIGHT CHARLES DAVI 2020

function [final_dataset final_weight_vector final_nearest_neighbors] = normalize_datasetBT(dataset,N)

%

%NORMALIZES DATASET
%

num_rows = size(dataset,1);
%calculate the average number of digits in each dimension---------------------
fori=1:N
digit_vector(i) = spec_logBT(mean(abs(dataset(:,i))))/log2(10);
endfor
%Note that N+1 is never included
max_dim = ceil(max(digit_vector));

min_dim = floor(min(digit_vector));

max_dimensions_vector = 1:N;

%normalizes the largest category of dimensions
num_items = size(max_dimensions_vector,2);
weight_vector = ones(1,N+1); %used to normalize the dataset
final_dataset = dataset;

final_weight_vector = weight_vector;

%sets the original accuracy

nearest_neighbors = NN_fully_vectorized(dataset, N);
actual_class_vector = dataset(;,N+1);
predicted_class_vector = dataset(nearest_neighbors, N+1);
final_nearest_neighbors = nearest_neighbors;

%ocalculates the error

error_vector = predicted_class_vector != actual_class_vector;
num_errors = sum(error_vector);

accuracy = 1 - num_errors/num_rows;

max_accuracy = accuracy;

%tests different weights for each dimension in scope
for i = min_dim : max_dim

forj=1:num_items

current_index = max_dimensions_vector(j);
current_num_digits = digit_vector(current_index);

diff =i - current_num_digits;
weight_vector(current_index) = 10/diff;
endfor

modified_dataset = dataset.*weight_vector;
nearest_neighbors = NN_fully_vectorized(modified_dataset,N);



actual_class_vector = dataset(:;,N+1);
predicted_class_vector = dataset(nearest_neighbors, N+1);

%calculates the error
error_vector = predicted_class_vector != actual_class_vector;
num_errors = sum(error_vector);
accuracy = 1 - num_errors/num_rows;
if(accuracy > max_accuracy)
max_accuracy = accuracy;
final_weight_vector = weight_vector;
final_dataset = modified_dataset;
final_nearest_neighbors = nearest_neighbors;
endif

endfor

endfunction



