
%===
%===
%VECTORIZED DEEP LEARNING
%===
%===
%COPYRIGHT CHARLES DAVI 2020

function [final_dataset final_weight_vector final_nearest_neighbors] = normalize_datasetBT(dataset,N)
%===
%NORMALIZES DATASET
%===

 num_rows = size(dataset,1);
 %calculate the average number of digits in each dimension---------------------
 for i = 1 : N

 digit_vector(i) = spec_logBT(mean(abs(dataset(:,i))))/log2(10);

 endfor

 %Note that N+1 is never included
 max_dim = ceil(max(digit_vector));
 min_dim = floor(min(digit_vector));

 max_dimensions_vector = 1:N;

 %normalizes the largest category of dimensions----------------------------------
 num_items = size(max_dimensions_vector,2);
 weight_vector = ones(1,N+1); %used to normalize the dataset
 final_dataset = dataset;
 final_weight_vector = weight_vector;

 %sets the original accuracy
 nearest_neighbors = NN_fully_vectorized(dataset, N);
 actual_class_vector = dataset(:,N+1);
 predicted_class_vector = dataset(nearest_neighbors, N+1);
 final_nearest_neighbors = nearest_neighbors;

 %calculates the error
 error_vector = predicted_class_vector != actual_class_vector;
 num_errors = sum(error_vector);
 accuracy = 1 - num_errors/num_rows;
 max_accuracy = accuracy;

 %tests different weights for each dimension in scope
 for i = min_dim : max_dim

 for j = 1 : num_items

 current_index = max_dimensions_vector(j);
 current_num_digits = digit_vector(current_index);

 diff = i - current_num_digits;

 weight_vector(current_index) = 10^diff;

 endfor

 modified_dataset = dataset.*weight_vector;
 nearest_neighbors = NN_fully_vectorized(modified_dataset,N);

 actual_class_vector = dataset(:,N+1);
 predicted_class_vector = dataset(nearest_neighbors, N+1);

 %calculates the error
 error_vector = predicted_class_vector != actual_class_vector;
 num_errors = sum(error_vector);
 accuracy = 1 - num_errors/num_rows;

 if(accuracy > max_accuracy)

 max_accuracy = accuracy;
 final_weight_vector = weight_vector;
 final_dataset = modified_dataset;
 final_nearest_neighbors = nearest_neighbors;

 endif

endfor

endfunction

