function [final_cluster_matrix final_delta] = iterative_delta_clustering_unsup(dataset, mutually_exclusive, geometric,
N)

num_rows = size(dataset,1);

%if true, then we apply geometric averaging (larger deltas)
if(geometric)

s = std(dataset(:,1:N)); %calculates the standard deviation of the dataset in each dimension
s = norm(s)/e

%otherwise, we apply arithmetic averaging (smaller deltas)
else

s = std(dataset(:,1:N)); %calculates the standard deviation of the dataset in each dimension
s = mean(s); %takes the average standard deviation

alpha = 1.5; %this is a constant used to adjust the standard deviation

s = s*alpha

endif
o,

(e}

num_iterations = 25;
delta_vector = [s/num_iterations : s/num_iterations : s];
delta_vector = delta_vector.A2; %we square to save one operation

max_change_count = 0;

%we have to run one iteration outside the loop
delta = delta_vector(1);
is_available = ones(1,num_rows);
current_cluster_matrix = zeros(num_rows, num_rows);
final_cluster_matrix = current_cluster_matrix;
final_delta = 0;
fori=1:num_rows
current_vector = dataset(i,1:N);
forj=1:num_rows
test_vector = dataset(j,1:N);
diff_vector = (current_vector .- test_vector)."2;

diff = sum(diff_vector);

%if true, then we add row j to cluster i
if(diff <= delta && is_available(j))

current_cluster_matrix(i,j) = 1;
if(mutually_exclusive == 1)
is_available(j) = 0;
endif
endif

endfor



endfor
prior_cluster_matrix = current_cluster_matrix;

Y%main loop
for k = 2 : num_iterations

delta = delta_vector(k);
is_available = ones(1,num_rows);
current_cluster_matrix = zeros(num_rows, num_rows);
fori=1:num_rows
current_vector = dataset(i,1:N);
forj=1:num_rows
test_vector = dataset(j,1:N);
diff_vector = (current_vector .- test_vector)."2;

diff = sum(diff_vector);

%if true, then we add row j to cluster i
if(diff <= delta && is_available(j))

current_cluster_matrix(i,j) = 1;
is_available(j) = 0;

endif
endfor
endfor
%counts the number of changes to the cluster_matrix
diff_matrix = (current_cluster_matrix .- prior_cluster_matrix)."2;
change_count = sum(diff_matrix(:))
if(change_count > max_change_count)
max_change_count = change_count;
final_cluster_matrix = current_cluster_matrix;
final_delta = delta;
endif
prior_cluster_matrix = current_cluster_matrix;
endfor

final_delta = sqrt(final_delta);

endfunction



