%clears the memory and the command prompt
clear

cle

pkg load image

o,

(e}

file_path = '/Users/charlesdavi/Desktop/Datasets/UCI/UCICredit.csv';
orig_dataset = csvread(file_path);

orig_num_rows = size(orig_dataset,1);

N = size(orig_dataset,2) - 1;

row_percentage = 1

num_rows = floor(orig_num_rows*row_percentage)
selected_rows = randperm(orig_num_rows,num_rows);

dataset = orig_dataset(selected_rows,:);

%

%NORMALIZES DATASET

[o)

(o]

%calculate the number of digits in each dimension
temp_vector = mean(abs(dataset(:,1:N)));

temp_vector = temp_vector + rand()*.00001; %to prevent log(0) errors
digit_vector = log10(temp_vector)
max_dim = ceil(max(digit_vector))
min_dim = floor(min(digit_vector))

s = std(digit_vector)

temp_vector = digit_vector > s;
max_dimensions_vector = find(temp_vector == 1);

%hnormalizes the largest category of dimensions
num_items = size(max_dimensions_vector,2);
weight_vector = ones(1,N+1); %used to normalize the dataset

%sets the original accuracy

[accuracy output_matrix error_vector] = find_NN_dataset(dataset, []);
max_accuracy = accuracy;

final_dataset = dataset;

for i = min_dim : max_dim

forj=1:num_items

current_index = max_dimensions_vector(j);
current_num_digits = digit_vector(current_index);

diff =i - current_num_digits;
weight_vector(current_index) = 10/diff;
endfor

modified_dataset = dataset.*weight_vector;
[accuracy output_matrix error_vector] = find_NN_dataset(modified_dataset, []);



if(accuracy > max_accuracy)
max_accuracy = accuracy;
final_weight_vector = weight_vector;
final_dataset = modified_dataset;
endif

endfor

max_accuracy
dataset = final_dataset;

%
%GENERATES TRAINING / TESTING ROWS
Y%

%Generates a training and testing dataset
num_training_rows = floor(.9*num_rows); %selects a portion of the dataset
training_rows = randperm(num_rows,num_training_rows);

testing_dataset = dataset;

testing_dataset(training_rows,:) = [];

training_dataset = dataset(training_rows,:);

num_testing_rows = size(testing_dataset,1);

%
%GENERATES CLUSTERS

(o)

tic;
s = std(dataset(:,1:N)); %calculates the standard deviation of the dataset in each dimension
s = norm(s); %takes the average standard deviation
cluster_matrix = zeros(num_testing_rows,num_training_rows);
delta = s/e; %this value of delta is based upon experimentation
fori=1:num_testing_rows

input_vector = testing_dataset(i,:);

[cluster_vector diff_vector] = find_delta_cluster(input_vector, training_dataset, delta, N);

cluster_matrix(i,:) = cluster_vector;

endfor
toc

Y%
%MODAL PREDICTION
%

num_classes = size(unique(dataset(;,N+1)),1)

[predicted_class_vector probability_vector confidence_vector] = modal_prediction_train_test(training_dataset,
cluster_matrix, num_classes, N);

actual_class_vector = testing_dataset(:,N+1);
error_vector = predicted_class_vector != actual_class_vector;

raw_accuracy = 1 - sum(error_vector)/num_testing_rows



%

%CONFIDENCE FILTERING

(o)

(o]

accuracy_p =[J;
accuracy_c =[];
accuracy_cp =[J;

Y%probability:
counter =1;
increment = .0001;
num_levels = size(0 : increment : 1,2);
forj=0:increment : 1

x = find(probability_vector >= j);

num_errors = sum(error_vector(x));

num_predictions = size(x,2);

if(num_predictions > 0)

accuracy_p(counter) = 1 - num_errors/num_predictions;

endif

counter = counter + 1;

endfor
%confidence
counter =1;

increment = .0001;
num_levels = size(0 : increment : 1,2);

confidence_vector = confidence_vector/max(confidence_vector);
forj=0:increment: 1

x = find(confidence_vector >= j);

num_errors = sum(error_vector(x));

num_predictions = size(x,2);

if(num_predictions > 0)

accuracy_c(counter) = 1 - num_errors/num_predictions;
endif
counter = counter + 1;

endfor

%confidence and probability
counter =1;
increment = .0001;



num_levels = size(0 : increment : 1,2);

num_predictions_vector = []

confidence_vector = confidence_vector/max(confidence_vector);
forj=0:increment : 1

x = find(probability_vector >= j);
y = find(confidence_vector >= j);

temp1 = zeros(num_rows,1);
temp?2 = zeros(num_rows,1);

temp1(x) = 1;
temp2(y) = 1;

z =temp1.*temp2;
z=find(z == 1);
z=2

num_errors = sum(error_vector(z));
num_predictions = size(z,2);

if(num_predictions > 0)

accuracy_cp(counter) = 1 - num_errors/num_predictions;
num_predictions_vector(counter) = num_predictions; %num predictions in scope

endif
counter = counter + 1;
endfor
figure, plot(accuracy_p)
figure, plot(accuracy_c)
figure, plot(accuracy_cp) %this is the plot generated by both thresholds
hold
plot(num_predictions_vector/num_rows)
file_name = 'YUsers/charlesdavi/Desktop/Datasets/UCI_Credit.png';

saveas(gcf,'Barchart.png’)

[o)

(o]

%MAGIC BUTTON

%

%finds accuracy within a .025 threshold of the desired accuracy
Y%tie-breaker is number of rows returned at a given accuracy

target_accuracy = .94



num_entries = size(num_predictions_vector,2)
best_accuracy = -1

best_num_rows = -1

best_index = -1; %flag for no matching accuracy
threshold = .025

fori=1:num_entries

current_accuracy = accuracy_cp(i);
current_num_rows = num_predictions_vector(i);

%if true, then the accuracy is acceptable

if(abs(current_accuracy - target_accuracy) <= threshold)

%this is the tie breaker
if(current_num_rows > best_num_rows)

best_index =1i;

best_accuracy = current_accuracy;

best_num_rows = current_num_rows;
endif

endif

endfor

%displays the returned accuracy and num rows, -1 indicates no match

best_accuracy
best_num_rows



