
%clears the memory and the command prompt
clear
clc
pkg load image
%---

file_path = '/Users/charlesdavi/Desktop/Datasets/UCI/UCICredit.csv';
orig_dataset = csvread(file_path);
orig_num_rows = size(orig_dataset,1);
N = size(orig_dataset,2) - 1;

row_percentage = 1

num_rows = floor(orig_num_rows*row_percentage)
selected_rows = randperm(orig_num_rows,num_rows);

dataset = orig_dataset(selected_rows,:);

%===
%NORMALIZES DATASET
%===

%calculate the number of digits in each dimension-------------------------------
temp_vector = mean(abs(dataset(:,1:N)));

temp_vector = temp_vector + rand()*.00001; %to prevent log(0) errors
digit_vector = log10(temp_vector)
max_dim = ceil(max(digit_vector))
min_dim = floor(min(digit_vector))

s = std(digit_vector)

temp_vector = digit_vector > s;
max_dimensions_vector = find(temp_vector == 1);

%normalizes the largest category of dimensions----------------------------------
num_items = size(max_dimensions_vector,2);
weight_vector = ones(1,N+1); %used to normalize the dataset

%sets the original accuracy
[accuracy output_matrix error_vector] = find_NN_dataset(dataset, []);
max_accuracy = accuracy;
final_dataset = dataset;

for i = min_dim : max_dim

 for j = 1 : num_items

 current_index = max_dimensions_vector(j);
 current_num_digits = digit_vector(current_index);

 diff = i - current_num_digits;

 weight_vector(current_index) = 10^diff;

 endfor

 modified_dataset = dataset.*weight_vector;
 [accuracy output_matrix error_vector] = find_NN_dataset(modified_dataset, []);

 if(accuracy > max_accuracy)

 max_accuracy = accuracy;
 final_weight_vector = weight_vector;
 final_dataset = modified_dataset;

 endif

endfor

max_accuracy
dataset = final_dataset;

%===
%GENERATES TRAINING / TESTING ROWS
%===

%Generates a training and testing dataset---------------------------------------
num_training_rows = floor(.9*num_rows); %selects a portion of the dataset
training_rows = randperm(num_rows,num_training_rows);
testing_dataset = dataset;
testing_dataset(training_rows,:) = [];
training_dataset = dataset(training_rows,:);
num_testing_rows = size(testing_dataset,1);

%===
%GENERATES CLUSTERS
%===

tic;
s = std(dataset(:,1:N)); %calculates the standard deviation of the dataset in each dimension
s = norm(s); %takes the average standard deviation

cluster_matrix = zeros(num_testing_rows,num_training_rows);

delta = s/e; %this value of delta is based upon experimentation

for i = 1 : num_testing_rows

 input_vector = testing_dataset(i,:);
 [cluster_vector diff_vector] = find_delta_cluster(input_vector, training_dataset, delta, N);
 cluster_matrix(i,:) = cluster_vector;

endfor
toc

%===
%MODAL PREDICTION
%===

num_classes = size(unique(dataset(:,N+1)),1)

[predicted_class_vector probability_vector confidence_vector] = modal_prediction_train_test(training_dataset,
cluster_matrix, num_classes, N);

actual_class_vector = testing_dataset(:,N+1)';

error_vector = predicted_class_vector != actual_class_vector;

raw_accuracy = 1 - sum(error_vector)/num_testing_rows

%===
%CONFIDENCE FILTERING
%===

accuracy_p = [];
accuracy_c = [];
accuracy_cp = [];

%probability--
counter = 1;
increment = .0001;
num_levels = size(0 : increment : 1,2);

for j = 0 : increment : 1

 x = find(probability_vector >= j);

 num_errors = sum(error_vector(x));

 num_predictions = size(x,2);

 if(num_predictions > 0)

 accuracy_p(counter) = 1 - num_errors/num_predictions;

 endif

 counter = counter + 1;

endfor

%confidence---
counter = 1;
increment = .0001;
num_levels = size(0 : increment : 1,2);

confidence_vector = confidence_vector/max(confidence_vector);

for j = 0 : increment : 1

 x = find(confidence_vector >= j);

 num_errors = sum(error_vector(x));

 num_predictions = size(x,2);

 if(num_predictions > 0)

 accuracy_c(counter) = 1 - num_errors/num_predictions;

 endif

 counter = counter + 1;

endfor

%confidence and probability---
counter = 1;
increment = .0001;

num_levels = size(0 : increment : 1,2);

num_predictions_vector = []

confidence_vector = confidence_vector/max(confidence_vector);

for j = 0 : increment : 1

 x = find(probability_vector >= j);
 y = find(confidence_vector >= j);

 temp1 = zeros(num_rows,1);
 temp2 = zeros(num_rows,1);

 temp1(x) = 1;
 temp2(y) = 1;

 z = temp1.*temp2;

 z = find(z == 1);

 z = z';

 num_errors = sum(error_vector(z));

 num_predictions = size(z,2);

 if(num_predictions > 0)

 accuracy_cp(counter) = 1 - num_errors/num_predictions;
 num_predictions_vector(counter) = num_predictions; %num predictions in scope

 endif

 counter = counter + 1;

endfor

figure, plot(accuracy_p)

figure, plot(accuracy_c)

figure, plot(accuracy_cp) %this is the plot generated by both thresholds

hold

plot(num_predictions_vector/num_rows)

file_name = '/Users/charlesdavi/Desktop/Datasets/UCI_Credit.png';

saveas(gcf,'Barchart.png')

%===
%MAGIC BUTTON
%===

%finds accuracy within a .025 threshold of the desired accuracy
%tie-breaker is number of rows returned at a given accuracy

target_accuracy = .94

num_entries = size(num_predictions_vector,2)

best_accuracy = -1
best_num_rows = -1
best_index = -1; %flag for no matching accuracy
threshold = .025

for i = 1 : num_entries

 current_accuracy = accuracy_cp(i);
 current_num_rows = num_predictions_vector(i);

 %if true, then the accuracy is acceptable
 if(abs(current_accuracy - target_accuracy) <= threshold)

 %this is the tie breaker
 if(current_num_rows > best_num_rows)

 best_index = i;
 best_accuracy = current_accuracy;
 best_num_rows = current_num_rows;

 endif

 endif

endfor

%displays the returned accuracy and num rows, -1 indicates no match
best_accuracy
best_num_rows

