%
%

[o)

(o]

%VECTORIZED NORMALIZATION
%

%
%

%COPYRIGHT CHARLES DAVI, 2021

[o)

©

%LOADS THE DATASET
%

%
%LOADS UCI WINE DATASET
%

%clears the memory and the command prompt
clear
cle

o,
(e}

file_path = 'Users/charlesdavi/Desktop/Datasets/UCl/wine_full_dataset';
dataset = csvread(file_path);

num_rows = size(dataset,1);

N = size(dataset,2) - 1;

%moves the classifer to the last column
temp = dataset(:,1);

dataset(:, 1) = dataset(:, N+1);
dataset(:, N+1) = temp;

[o)

(o]

%NORMALIZES DATASET
%

%calculate the average of each dimension
digit_vector = log10(mean(dataset(:,1:N)))
max_dim = ceil(max(digit_vector))
min_dim = floor(min(digit_vector))

[data_categories_array final_delta] = optimize_categories_fast_N(digit_vector',1); %this is a one dimensional
categorization task
num_categories = size(data_categories_array,2);

%finds the category that contains the largest item
max_item = -Inf;

max_category_index = -1;
fori=1:num_categories

current_category = data_categories_array{i};
num_items = size(current_category,1);

forj=1:num_items

current_item = current_category(j);



if(current_item > max_item)

max_item = current_item;
max_category_index =i;

endif
endfor

endfor

%finds the indexes for the largest dimensions
max_category = data_categories_array{max_category_index}
num_items = size(max_category,1);
counter = 1;
max_dimensions_vector = [];
fori=1:num_items

current_item = max_category(i);

forj=1:N

if(digit_vector(j) == current_item)

max_dimensions_vector(counter) = j;
counter = counter + 1;

endif
endfor

endfor

%hnormalizes the largest category of dimensions
num_items = size(max_dimensions_vector,2);
weight_vector = ones(1,N+1); %used to normalize the dataset
max_accuracy = -Inf;

for i = min_dim : max_dim

forj=1:num_items

current_index = max_dimensions_vector(j);
current_num_digits = digit_vector(current_index);

diff = i - current_num_digits;
weight_vector(current_index) = 10/diff;
endfor
weight_vector

modified_dataset = dataset.*weight_vector;
[accuracy output_matrix error_vector] = find_NN_dataset(modified_dataset, []);

if(accuracy > max_accuracy)



max_accuracy = accuracy;

final_weight_vector = weight_vector;

final_dataset = modified_dataset;
endif

endfor

%
%GENERATE NON-MUTUALLY EXCLUSIVE CLUSTERS
%

tic;[cluster_matrix final_delta] = fully_vectorized_delta_clustering(final_dataset, N); toc

%
%TESTS ACCURACY
%

fori=1:num_rows
x = find(cluster_matrix(i,:) == 1); %the index of the vectors in the cluster for row i

classifier = dataset(i, N+1); %this is the classifier for the i-th vector
cluster_classifiers = dataset(x,N+1); %these are the classifiers for the vectors in the cluster for the i-th vector

num_errors = sum(cluster_classifiers != classifier);
num_entries = size(x,2);
accuracy(i) = 1 - num_errors/num_entries;

endfor

o,
(e}

average_accuracy = mean(accuracy)*100
min_accuracy = min(accuracy)*100

max_accuracy = max(accuracy)*100
num_elements_per_cluster = sum(cluster_matrix,2);
avg_elements = mean(num_elements_per_cluster)
min_elements = min(num_elements_per_cluster)
max_elements = max(num_elements_per_cluster)
%saves an accuracy barchart

[distribution_vector] = gen_accuracy_distribution(accuracy)
x =[0:10:90]

bar(x,distribution_vector)

xlim([0 95])

file_path = '/Users/charlesdavi/Desktop/Vectorized_IP/lonosphere_bar_chart.png’;

saveas(gcf,file_path);



