

```

1  function [weight_matrix accuracy] = linear_MC_optimizer(dataset, capacity,
2    simulation_depth, N)
3
4    num_rows = size(dataset, 1);
5    weight_matrix = zeros(simulation_depth, N); %this is an initial seed value for
the Monte Carlo algorithm
6
7    %this ensures the value of alpha is 1 for the first iteration-----
8    accuracy = zeros(simulation_depth, 1);
9
10   class_vector = dataset(:, N + 1);
11
12   for j = 1 : simulation_depth
13
14     alpha = (1 - accuracy(j))/(1 + accuracy(j))^(1 + accuracy(j));
15     initial_weight_vector = weight_matrix(j,:);
16
17     [predicted_class_vector diff_vector weight_vector] =
18     interp_classification(dataset, capacity, initial_weight_vector, alpha, N);
19
20     weight_matrix(j + 1,:) = weight_vector; %these are the weights generated
21
22     num_errors = sum(predicted_class_vector != class_vector);
23     accuracy(j + 1) = 1 - num_errors/num_rows;
24
25   endfor
26
endfunction

```