optimize categories 3D
function [data_categories_array category_vec anchor_array H_final delta] =
optimize categories 3D(orig data_array,scale toggle)

%takes in an array of 3-space vectors and returns a categorization of those
vectors

%scale _toggle determines whether the categorization looks for fine scale () or
large scale (1) categories

[Xx num_items] = size(orig_data_array);

%this portion of the code addresses a special case where the data isn't really
random at all

%it randomizes the data slightly by adding some noise, the level of which can be
adjusted

%it also makes a copy of the original data, to ensure that category labels aren't
included in the calculations

noise_level = .000001;
for i =1 : num_items

temp = orig data_array{i};
temp(1) = temp(1) + rand()*noise level;
temp(2) = temp(2) + rand()*noise_level;
temp(3) = temp(3) + rand()*noise level;
data_array{i} = temp(1:3);

endfor

%initializes the data_categories array to the fully partitioned data_set
%and calculates the norm of each vector, ignoring the category number

clear temp;
for i =1 : num_items

data_categories_array{i} = data_array{i};
norm_vector(i) = norm(data_array{i});

endfor

Page 1



optimize categories 3D

s = 1.23*std(norm_vector(:))
symm = left_right_delta_3D(data_array);

min_entropy = (1 - symm)*log2(num_items);
max_cnt = 25;

%this is an initialization
category_vec(l) = 0;
anchor_array = {};

%returns a measure of the symmetry of information in the data_set
if(scale_toggle == 0)

[N s_0] partition_array_3D(data_array); %fine structure

else
[N s_ @] = partition_array_3D_bigly(data_array); %large structure

endif

%this is the main loop of the algorithm
divisor = NA(N*(1-symm))/10;
increment = divisor / max_cnt;

max_ent_change = 0;
H_2 = log2(num_items);
H final = H 2;

delta = 0;

cnt = 05
while(cnt <= divisor && H_2 >= min_entropy)

clear category_vec_1;
clear category vec 2;

max_delta = (cnt/divisor)*s;

[data_categories_array_1 anchor_array_1] =
generate categories 3D(orig data_array,max_delta);

max_delta = ((cnt+increment)/divisor)*s;

Page 2



optimize categories 3D
[data_categories_array_2 anchor_array_2] =
generate categories 3D(orig data_array,max_delta);
[x num_categories] = size(data_categories array 1);
for i = 1 : num_categories
[x temp] = size(data_categories_array 1{i}); %loads the number of items in
each category
category vec 1(i) = temp;
endfor
[x num_categories] = size(data_categories_array 2);
for i = 1 : num_categories
[x temp] = size(data_categories_array 2{i}); %loads the number of items in
each category
category vec 2(i) = temp;

endfor

category vec_1
category_vec_2

category vec_1/num_items;
category_vec_2/num_items;

vector_entropy(category vec_1);

H 1
H 2 = vector_entropy(category vec 2);

if((H_1 - H_2)"2 > max_ent_change)

max_ent change = (H_.1 - H_2)"2;
data_categories_array = data_categories_array_2;
category _vec = category_vec_2;
anchor array anchor_array_2;

delta = m delta,
H_final = H_2;
endif

cnt = cnt + increment;
endwhile

endfunction

Page 3



