
optimize_categories_3D
function [data_categories_array category_vec anchor_array H_final delta] =
optimize_categories_3D(orig_data_array,scale_toggle)

 %takes in an array of 3-space vectors and returns a categorization of those
vectors
 %scale_toggle determines whether the categorization looks for fine scale (0) or
large scale (1) categories

 [x num_items] = size(orig_data_array);

%---

 %this portion of the code addresses a special case where the data isn't really
random at all
 %it randomizes the data slightly by adding some noise, the level of which can be
adjusted
 %it also makes a copy of the original data, to ensure that category labels aren't
included in the calculations

 noise_level = .000001;

 for i = 1 : num_items

 temp = orig_data_array{i};
 temp(1) = temp(1) + rand()*noise_level;
 temp(2) = temp(2) + rand()*noise_level;
 temp(3) = temp(3) + rand()*noise_level;
 data_array{i} = temp(1:3);

 endfor

%---

 %initializes the data_categories_array to the fully partitioned data_set
 %and calculates the norm of each vector, ignoring the category number

 clear temp;

 for i = 1 : num_items

 data_categories_array{i} = data_array{i};
 norm_vector(i) = norm(data_array{i});

 endfor

Page 1

optimize_categories_3D
%---

 s = 1.23*std(norm_vector(:))

 symm = left_right_delta_3D(data_array);

 min_entropy = (1 - symm)*log2(num_items);
 max_cnt = 25;

 %this is an initialization
 category_vec(1) = 0;
 anchor_array = {};

 %returns a measure of the symmetry of information in the data_set
 if(scale_toggle == 0)

 [N s_0] = partition_array_3D(data_array); %fine structure

 else

 [N s_0] = partition_array_3D_bigly(data_array); %large structure

 endif

%---

 %this is the main loop of the algorithm
 divisor = N^(N*(1-symm))/10;
 increment = divisor / max_cnt;

 max_ent_change = 0;
 H_2 = log2(num_items);
 H_final = H_2;
 delta = 0;

 cnt = 0;

 while(cnt <= divisor && H_2 >= min_entropy)

 clear category_vec_1;
 clear category_vec_2;

 max_delta = (cnt/divisor)*s;
 [data_categories_array_1 anchor_array_1] =
generate_categories_3D(orig_data_array,max_delta);

 max_delta = ((cnt+increment)/divisor)*s;

Page 2

optimize_categories_3D
 [data_categories_array_2 anchor_array_2] =
generate_categories_3D(orig_data_array,max_delta);

 [x num_categories] = size(data_categories_array_1);

 for i = 1 : num_categories

 [x temp] = size(data_categories_array_1{i}); %loads the number of items in
each category
 category_vec_1(i) = temp;

 endfor

 [x num_categories] = size(data_categories_array_2);

 for i = 1 : num_categories

 [x temp] = size(data_categories_array_2{i}); %loads the number of items in
each category
 category_vec_2(i) = temp;

 endfor

 category_vec_1 = category_vec_1/num_items;
 category_vec_2 = category_vec_2/num_items;

 H_1 = vector_entropy(category_vec_1);
 H_2 = vector_entropy(category_vec_2);

 if((H_1 - H_2)^2 > max_ent_change)

 max_ent_change = (H_1 - H_2)^2;
 data_categories_array = data_categories_array_2;
 category_vec = category_vec_2;
 anchor_array = anchor_array_2;
 delta = max_delta;
 H_final = H_2;

 endif

 cnt = cnt + increment;

 endwhile

endfunction

Page 3

