
identify_features
function [region_matrix N S_mat prob_mat] = identify_features(I)

% This function takes an image as input, and first partitions it using the
mw_sq_std_dev algorith, which maximizes the "information contrast" of the partition.
% The algoritm then goes through the partitioned image, and groups regions that
contain similar amounts of information into larger contiguous regions.
% The gathering of regions is repeated using "wider" tests of similarity, and the
difference between the entropies of the resulting assemblages is measured.
% The assemblage of regions that is the result of the greatest change in entropy is
chosen as the final assemblage of regions.
% The number of iterations is determined by how pronouned the foreground of the
image is, with more pronounced foregrounds requiring fewer iterations.

[N Y X] = mw_sq_std_dev(I); %used to calculate N, where N^2 is the number of regions
the image is partitioned into

[A B C D] = score_image(I,N,X,Y); %generates a series of vectors, though we use only
D, which is a measure of information contained in each region

temp_mat = vec2mat(D,N); %turns D into a matrix where each entry corresponds to the
information content of region (i,j) of the image partition

S_mat = generate_S_mat_distribution(temp_mat); %generates a score from 0 to 1 of how
notable the information content of each region is

s_smat = std(S_mat(:)); %the std dev of S_mat, which is used as the basis for
determining how similar two regions are

bg_mat = find_bg_color(I,N); %a matrix (bg_mat) that contains a measure of how
dominated each region is by its most frequent color

prob_mat = generate_S_mat_distribution(bg_mat); %generates a score from 0 to 1 of
how dominated each region is by its most frequent color using bg_mat

delta_bg = 1; %a dummy variable reserved for future use

s_bg = std(prob_mat(:)); %also reserved for future use

symm_1 = left_right_delta(prob_mat(:)'); %a measure of the prominance of the
background

symm_2 = left_right_delta(S_mat(:)'); %a measure of the prominance of regions with
unusual levels of information content

symm = inf_weighted_prob([symm_1 symm_2]);

num_iterations = 25; %a cap on how many times the algorithm will test the test of
the entropy of the assemblage

Page 1

identify_features

divisor = N^(N*(1-symm))/10 %the maximum devisor of the standard deviation of the
S_mat matrix

increment = divisor / num_iterations

i = 0;

region_matrix_1 =
gather_regions_delta(N,S_mat,prob_mat,(i/divisor)*s_smat,i*delta_bg); %assembles the
image into groups of regions

region_matrix_2 = gather_regions_delta(N,S_mat,prob_mat,((i +
increment)/divisor)*s_smat,(i+1)*delta_bg);

temp = (entropy(region_matrix_1) - entropy(region_matrix_2))^2/increment; %an
approximation to the derivative of the entropy of the assemblage as a function of i

delta = temp;

region_matrix = region_matrix_2;

while((entropy(region_matrix_1) >= (1 - symm)*log2(N^2)) && (i <= num_iterations))
%the more diverse the image, the more information we'll want in the region_matrix,
generating smaller features

 i = i + increment;

 region_matrix_1 =
gather_regions_delta(N,S_mat,prob_mat,(i/divisor)*s_smat,i*delta_bg);
 region_matrix_2 = gather_regions_delta(N,S_mat,prob_mat,((i +
increment)/divisor)*s_smat,(i+1)*delta_bg);
 delta = (entropy(region_matrix_1) - entropy(region_matrix_2))^2/increment;

 if(delta > temp)

 temp = delta;
 region_matrix = region_matrix_2;

 endif

endwhile

endfunction

Page 2

